App Inventor + IoT: Proximity Sensor

This tutorial will help you get started with App Inventor + IoT and a proximity sensor on an <u>Arduino 101</u> controller. We are also using a <u>Seeed Grove</u> shield for this tutorial. You do not need to use this board, but it does make things easier. The proximity sensor we recommend is the <u>Grove Infrared Proximity Sensor</u>.

Before you start you should first complete the <u>App Inventor + IoT Setup tutorial</u> to set up your Arduino device.

- Connect the proximity sensor to the Grove board in the A0 pin connector.
- For this tutorial make sure
 PROXIMITY is set to
 ENABLED and all others are set to DISABLED.
- You should also click the arrow button in the top left to upload the code.

SO 🗈 🗹 🔛						ø
AIM-for-Things-Arduino101 §	Accelerometer.hh	Button.hh	Camera.hh	Console.hh	Fingerprint.hh	🔻 yros
1 #define NAME 2 #define DEBUGGING 3	"App Inventor" ENABLED	// no more	than 11 chard	acters		
4 #define ACCELEROMETER	DISABLED					- 1
5 #define BUTTON	DISABLED					
6 #define CAMERA	DISABLED					
7 #define CONSOLE	DISABLED					
8 #define FINGERPRINT	DISABLED					
9 #define GYROSCOPE	DISABLED					
10 #define LED	DISABLED					
12 #define LIGHT_SENSOR	DISABLED					
12 #define MOISTURE_SENSOR	DISABLED					
14 #define PROVIMITY						
15 #define PWM						
16 #define BGBLCD	DT SARLED					
17 #define SERVO	DTSABLED					
18 #define SOUND RECORDER	DISABLED					
19 #define TEMPERATURE	DISABLED					
20						
21 // frequency to read ser	sor values in µs					
22 const unsigned long SENS	$OR_UPDATE_FREQ = 50$	0000;				
23 const unsigned long IMU_	$READ_FREQ = 5000;$					
24 const double IMU_FILTER_	ALPHA = 0.5; //Alph	na for accele	erometer low p	ass filter		
25						
26 unsigned long nextSensor	Update;					
27 unsigned long nextIMURed	ıd;					
28 double dt;						
29						
30 const uint8_t BITS[8] =	{ 0x01, 0x02, 0x04,	0x08, 0x10	0x20, 0x40,	0x80 };		
31 const uint8_t MASK[8] = 32	{ 0xFE, 0xFD, 0xFB,	0xF7, 0xEF	0xDF, 0xBF,	0x7F };		
33 #include "common.h"						
		0				

Next, you should complete the <u>App Inventor + IoT Basic Connection</u> tutorial to make a basic connection to the Arduino device. If you prefer, you can download the completed .aia file <u>here</u>.

The remaining steps all build off of the the starter code for Basic Connection tutorial and .aia:

- Drag a Label from the User Interface Palette and drop it between
 LabelStatus and ListBLE
 - Rename the Label "LabelData".
 - Change its text to "Data: ". -

Palet e	Viewer	Components	Properties
Use Interface	Display hidden components in Viewer	😑 🔲 Screen 1	LabelData
Layout	Check to see Preview on Tablet size.	😑 🔤 HorizontalArrangement 1	BackgroundColor
Media	Screen1	ButtonScan	None
Draving and Animation		ButtonStopScan	FontBold
Sentors	Scan Stop Scan Connect Disconnect	ButtonConnect	FontItalic
Social	Data	ButtonDisconnect	
Storage		LabelData	FontSize
Connectivity			East Trackers
L SOOO MUNIPOTODINOO		BluetoothLE1	default -
LEGO® MINDSTORMS®		Sarduino101ProximitySen:	HTMLFormat
Experimental			0
Extension			HasMargins
Import extension			Height
			Automatic
📚 Arduino101Button 💿 🔣			Width
📚 Arduino101Gyroscope 🕜 🔣			Automatic
📀 Arduino101Humidity 💿 🔣		Rename Delete	Text
📚 Arduino101Led 💿 🔣			TaxtAlignment
😞 Arduino101LightSensor 💿 🔣	Non-visible components	Media	left : 0 -
📚 Arduino101Moisture 💿 🔣	Bintecht El Arduine 1010 Provins in Connect	Upload File	TextColor
🐼 Arduino101PWMMotor 🕐 🕱	BiuetoothLE1 Arquino101ProximitySenSoF1		Black
😒 Arduino101Pins 🛛 🕅			
Arduino101ProximitySensor 2			

- In the Palette window, click on Extension at the bottom and then on "Import extension" and click on "URL".
 - Paste in this URL:
 - http://iot.appinventor.mit.edu/assets/resources/edu.mit.appinventor.iot.arduino101.aix
- Add the Arduino101ProximitySensor extension to your app by dragging it onto the Viewer.

Next, we need to let App Inventor know which pin on the Grove board the proximity sensor is connected to.

- Click on Ardunio101ProximitySensor1 in the Components pane.
- In the Properties pane under **Pin**, write in the <u>analog</u> pin that matches the one the proximity sensor is plugged into on the Grove board, (in this case A0).
 - Note: You only need to put the number (0), not the letter "A".
 - Another note: If your sensor wires look like the picture below, note that the yellow wire goes to the A1 pin, not A0 as you would think. Therefore, you should type the number 1 into the **Pin** property setting, not 0.

ewer		Components	Properties	
Display hidden components in Viewer Check to see Preview on Tablet size.		Screen1 Screen1 ButtonScan ButtonScan	Arduino101ProximitySensor1 BluetoothDevice BluetoothLE1	
Scan Stop Scan Connect Di Status: Data:	sconnect Screen1	ButtonStopScan ButtonStopScan ButtonConnect ButtonDisconnect LabelStatus LabelData ListBLE BluetoothLE1 CArduino101ProximitySens Rename Delete	Pin 2	
Non-visible components	ensorl	Media Upload File		

Now switch to the Blocks Editor view

First, we want to request data updates when the sensor value on the Arduino changes.

• from the Arduino101ProximitySensor1 drawer in the Blocks pane, add call Arduino101ProximitySensor1.RequestProximityUpdates to the existing when BluetoothLE1.Connected block you made in the Basic Connection tutorial.

Next, we need to store the data we receive from the sensor. From the Variables drawer in the docs pane, drag an **initialize global name to** block and name it "Proximity". From the Math drawer add a number block and set it to "0". We'll use this to keep track of the sensor value.

initialize global Proximity to

Let's make a new procedure to display the current readings in the **LabelData** when we get new data. You can create a procedure by dragging out a purple procedure block from the Procedures drawer in the Blocks pane. Let's rename it **updateDataLabel.**

- from LabelData in the Blocks pane, add **set LabelData.Text to.**
- from the Text drawer connect a **join** block.
 - From the Text drawer, connect a text block and type
 "Distance: ".
 - From the Variables drawer connect a **get global Proximity**.

Finally, we need to call the procedure when this data is received.

- From Arduino101ProximitySensor1 drag when
 Ardunio101ProximitySensor1.ProximitySensorDataReceived.
 - from the Variables drawer, add set global light.

Your app should now be working! Connect your Arduino device using the MIT Al2 Companion (if you haven't already). Test it out by moving your hand closer and farther away from the sensor. If it is working, you should see the data label change.

68° 🖬 🗖		*	ବଟ 🐨 🌌 🗎 1:11			
Screen1	_	_				
Scan	Stop Scan	Connect	Disconnect			
Status: Co	Status: Connected					
Distance:	56					
	\triangleleft	0				

