
App Inventor + IoT:

read button status with Micro:bit

I/O pins

(with Basic Connection

tutorial completed)

Level: advanced
This tutorial will help you work with App Inventor + IoT and read the

status of a button connected to a micro:bit controller.

 source .aia

Pairing with Micro:bit

First, you will need to pair your

phone or tablet to the micro:bit

controller, using these

directions. Your device must be

paired with the micro:bit in

order for the app to work.

Hardware list

In this project, we are going to detect whether a button (which is

connected to Micro:bit) is pressed using App Inventor. When that

button is pressed, the bee icon on screen will change to a random

position.

 Here are the components you need for this project:

● BBC micro:bit dev board, 1

● breadboard, 1

● wires, 3

● potentiometer, 1

60
mins

Obs

ole
te

May
 N

ot
Work

https://www.microbit.co.uk/device
https://www.microbit.co.uk/device
http://iot.appinventor.mit.edu/assets/samples/MicrobitIOpin_potentiometer.aia
https://pxt.microbit.org/reference/bluetooth/bluetooth-pairing

Micro:bit potentiometer

GND right pin (grey wire)

P0 middle pin (green wire)

3V left pin (red wire)

Note: potentiometer is a non-polarized component, which means the

difference to connect potentiometer left pin to MCU board’s 5V pin

(another pin to GND pin) is that when you rotate potentiometer shaft

clockwise, the pin value will change in opposite way than to connect

its right pin to MCU board’s 5V pin.

Obs

ole
te

May
 N

ot
Work

Finish as below, let’s take a look:

Or you can use extension board, like DFRobot’s BOSON

extension board:

App Inventor

This app will move a imageSprite randomly when you press the

button connected to micro:bit’s P0 pin. Technically speaking, App

Inventor is asking micro:bit to report its pin status and this is where

we connect the button to. First, log into MIT App Inventor site and

create a new project.

Obs

ole
te

May
 N

ot
Work

https://www.dfrobot.com/product-1638.html
https://www.dfrobot.com/product-1638.html
http://ai2.appinventor.mit.edu/

Designer

You should complete the App Inventor + IoT Basic Connection

tutorial to make a basic connection to the micro:bit device. If you

prefer, you can download the completed .aia file here.

The remaining steps all build off of the the starter code for Basic

Connection tutorial and .aia.

First, we need to add the necessary extension.

● In the Palette window, click on Extension at the

bottom and then on "Import extension" and click on

"URL".

○ Paste in this URL:

http://iot.appinventor.mit.edu/assets/com.bbc.mi

cro:bit.profile.aix

● Add a Microbit_IOpin extension to your app by

dragging it onto the Viewer, set its

BluetoothDevice to "BluetoothLE1"(Don’t

forget!).

Let’s add more components to our app to read the magnetometer

status.

● From the Drawing and animation palette, add a

Canvas component. Set its width to "Fill

Obs

ole
te

May
 N

ot
Work

https://drive.google.com/open?id=0B51cwz24uqobanJ2XzhLbGpQOFk
https://drive.google.com/open?id=0B51cwz24uqobanJ2XzhLbGpQOFk
https://www.dropbox.com/s/purdn7rrtjz52m9/IoT_BaseConnect.aia?dl=0
http://iot.appinventor.mit.edu/assets/com.bbc.micro:bit.profile.aix
http://iot.appinventor.mit.edu/assets/com.bbc.micro:bit.profile.aix

parent", height to "200 pixels".

● From the Drawing and animation palette, add an

ImageSprite component, set its Picture to some

cute image (no bigger than the canvas).

● Add a label component, set its FontSize to 40

and Text to "pin data". We will update the

micro:bit P0 pin value here.

● Add one more label component, set its FontSize

to 40 and Text to "0, 0". We will update the latest

position of the imageSprite here.

● From Sensor palette, add a Clock component,

set its TimerInterval to 100, which means its

timer will trigger 10 times per second.

After some adjusting, your designer should look similar to

this. It doesn’t have to be exactly the same. Feel free to

modify the component properties, such as background

color, position and text size.

Obs

ole
te

May
 N

ot
Work

Blocks

STEP 1: Request updates when connected

In the BluetoothLE1.Connected event, we show messages to tell

user that we are connected with micro:bit and set micro:bit’s pin

status as "digital input". Since we are going to read the button status

in this project. Check the Microbit_Io_Pin.ConfigurePin method,

please specify the pinNumber to 0 (means P0 pin of micro:bit and

set the analog field to false and the input field to true. And don't

forget to set Clock.TimerEnabled to true, which means we are using

the Clock component to read micro:bit pin status periodically.

Let’s let a look of Microbit_Io_Pin.WritePinConfiguration method,

it has three parameters: pinNumber (pin index), analog (true to

analog, false to digital) and input (true to input, false to output).

This is to set micro:bit’s P0 pin as digital output. You can connect

component like LED to this pin. For micro:bit I/O pins detail please

check this link: http://microbit.org/guide/hardware/pins/

Obs

ole
te

May
 N

ot
Work

http://microbit.org/guide/hardware/pins/

 And this is to set micro:bit’s P2 pin as analog input. You can

connect component like potentiometer to this pin.

STEP2: read button status periodically

In Clock.Timer event, we call Microbit_Io_Pin.ReadInputPinData

method to read a specified micro:bit pin data, which is P0 in our case.

Since we’ve set Clock’s TimerInterval property to 100, this means

we are reading micro:bit pin data every 100 millisecond (10 times per

second).

Obs

ole
te

May
 N

ot
Work

Note: you must configure the pin as digital input (in STEP1) to read

its data correctly.

STEP3a:

Microbit_Io_Pin.PinDataReceived event will be called after the pin

data is read successfully, and it will return a list (pin index, pin data)

as a result. Here we use a pressed variable and use a select list

item method to get pin data and show it on the label. pressed

variable will be 1 when the button is pressed and will be 0 when the

button is released.

STEP3b: move ImageSprite to random location when button is

pressed

To make our app more interactive, we will move the ImageSprite

randomly every time the button is pressed (ImageSprite.MoveTo

method).

Obs

ole
te

May
 N

ot
Work

STEP3c: update ImageSprite location on label

We also show the latest ImageSprite position on a label.

STEP4:

Finally, we put things from STEP3a to 3b together, finished as below:

Obs

ole
te

May
 N

ot
Work

STEP5: Disconnect from micro:bit

You can disconnect from micro:bit by clicking the ButtonDisconnect.

This will reset the app to its initial state to wait for next connect

request.

Tips

Your app should now be working! Make sure you have paired the

Bluetooth on your Android device to your micro:bit. Then test it out

by connecting your micro:bit device using the MIT AI2 Companion

(if you haven't already) or installing it by .apk.

Press the button, you will see the imageSprite flying on the screen

and there will be an 1/0 changing according to button status and the

latest imageSprite position on the corresponding labels.

Obs

ole
te

May
 N

ot
Work

Brainstorming

1. Modify this project, play one sound effect when the button is

pressed and play another sound effect when the button is

released.

2. Add one more potentiometer to control the ImageSprite to move

along the Y-axis.

Obs

ole
te

May
 N

ot
Work

